3.2.68 \(\int \frac {a+a \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx\) [168]

3.2.68.1 Optimal result
3.2.68.2 Mathematica [A] (verified)
3.2.68.3 Rubi [A] (verified)
3.2.68.4 Maple [A] (verified)
3.2.68.5 Fricas [C] (verification not implemented)
3.2.68.6 Sympy [F]
3.2.68.7 Maxima [F]
3.2.68.8 Giac [F]
3.2.68.9 Mupad [F(-1)]

3.2.68.1 Optimal result

Integrand size = 21, antiderivative size = 75 \[ \int \frac {a+a \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d} \]

output
2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+ 
1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2*a*(cos(1/2*d*x+1/2*c 
)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d* 
x+c)^(1/2)*sec(d*x+c)^(1/2)/d
 
3.2.68.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.65 \[ \int \frac {a+a \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a \sqrt {\cos (c+d x)} \left (E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )\right ) \sqrt {\sec (c+d x)}}{d} \]

input
Integrate[(a + a*Sec[c + d*x])/Sqrt[Sec[c + d*x]],x]
 
output
(2*a*Sqrt[Cos[c + d*x]]*(EllipticE[(c + d*x)/2, 2] + EllipticF[(c + d*x)/2 
, 2])*Sqrt[Sec[c + d*x]])/d
 
3.2.68.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a \sec (c+d x)+a}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4274

\(\displaystyle a \int \frac {1}{\sqrt {\sec (c+d x)}}dx+a \int \sqrt {\sec (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4258

\(\displaystyle a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3119

\(\displaystyle a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

input
Int[(a + a*Sec[c + d*x])/Sqrt[Sec[c + d*x]],x]
 
output
(2*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + 
(2*a*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d
 

3.2.68.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 
3.2.68.4 Maple [A] (verified)

Time = 12.25 (sec) , antiderivative size = 150, normalized size of antiderivative = 2.00

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(150\)
parts \(\frac {2 a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(268\)
risch \(-\frac {i a \sqrt {2}}{d \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}-\frac {i \left (\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \operatorname {EllipticF}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )}{\sqrt {{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}}}-\frac {2 \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}{\sqrt {{\mathrm e}^{i \left (d x +c \right )} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i \operatorname {EllipticE}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i \operatorname {EllipticF}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}}}\right ) a \sqrt {2}\, \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}}{d \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}\) \(387\)

input
int((a+a*sec(d*x+c))/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4 
+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-Ellipt 
icE(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^ 
2-1)^(1/2)/d
 
3.2.68.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.43 \[ \int \frac {a+a \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx=\frac {-i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - i \, \sqrt {2} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{d} \]

input
integrate((a+a*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")
 
output
(-I*sqrt(2)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 
I*sqrt(2)*a*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + I* 
sqrt(2)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + 
 I*sin(d*x + c))) - I*sqrt(2)*a*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d
 
3.2.68.6 Sympy [F]

\[ \int \frac {a+a \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx=a \left (\int \frac {1}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \sqrt {\sec {\left (c + d x \right )}}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))/sec(d*x+c)**(1/2),x)
 
output
a*(Integral(1/sqrt(sec(c + d*x)), x) + Integral(sqrt(sec(c + d*x)), x))
 
3.2.68.7 Maxima [F]

\[ \int \frac {a+a \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {a \sec \left (d x + c\right ) + a}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate((a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)
 
3.2.68.8 Giac [F]

\[ \int \frac {a+a \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {a \sec \left (d x + c\right ) + a}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate((a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)
 
3.2.68.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+a \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {a+\frac {a}{\cos \left (c+d\,x\right )}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((a + a/cos(c + d*x))/(1/cos(c + d*x))^(1/2),x)
 
output
int((a + a/cos(c + d*x))/(1/cos(c + d*x))^(1/2), x)